CICBUAPnlp at SemEval-2016 Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings

نویسندگان

  • Helena Gómez-Adorno
  • Darnes Vilariño Ayala
  • Grigori Sidorov
  • David Pinto
چکیده

This paper presents our approach for SemEval 2016 task 4: Sentiment Analysis in Twitter. We participated in Subtask A: Message Polarity Classification. The aim is to classify Twitter messages into positive, neutral, and negative polarity. We used a lexical resource for pre-processing of social media data and train a neural network model for feature representation. Our resource includes dictionaries of slang words, contractions, abbreviations, and emoticons commonly used in social media. For the classification process, we pass the features obtained in an unsupervised manner into an SVM classifier.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PotTS at SemEval-2016 Task 4: Sentiment Analysis of Twitter Using Character-level Convolutional Neural Networks

This paper presents an alternative approach to polarity and intensity classification of sentiments in microblogs. In contrast to previous works, which either relied on carefully designed hand-crafted feature sets or automatically derived neural embeddings for words, our method harnesses character embeddings as its main input units. We obtain task-specific vector representations of characters by...

متن کامل

UniPI at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification

The paper describes our submission to the task on Sentiment Analysis on Twitter at SemEval 2016. The approach is based on a Deep Learning architecture using convolutional neural networks. The approach used only word embeddings as features. The submission used embeddings created from a corpus of news articles. We report on further experiments using embeddings built for a corpus of tweets as well...

متن کامل

aueb.twitter.sentiment at SemEval-2016 Task 4: A Weighted Ensemble of SVMs for Twitter Sentiment Analysis

This paper describes the system with which we participated in SemEval-2016 Task 4 (Sentiment Analysis in Twitter) and specifically the Message Polarity Classification subtask. Our system is a weighted ensemble of two systems. The first one is based on a previous sentiment analysis system and uses manually crafted features. The second system of our ensemble uses features based on word embeddings...

متن کامل

funSentiment at SemEval-2017 Task 4: Topic-Based Message Sentiment Classification by Exploiting Word Embeddings, Text Features and Target Contexts

This paper describes the approach we used for SemEval-2017 Task 4: Sentiment Analysis in Twitter. Topic-based (target-dependent) sentiment analysis has become attractive and been used in some applications recently, but it is still a challenging research task. In our approach, we take the left and right context of a target into consideration when generating polarity classification features. We u...

متن کامل

funSentiment at SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs Using Word Vectors Built from StockTwits and Twitter

This paper describes the approach we used for SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs. We use three types of word embeddings in our algorithm: word embeddings learned from 200 million tweets, sentiment-specific word embeddings learned from 10 million tweets using distance supervision, and word embeddings learned from 20 million StockTwits messages. In our ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016